Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37956420

RESUMEN

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Asunto(s)
Leucemia Promielocítica Aguda , PPAR delta , Animales , Ratones , Catepsina G , Dieta Alta en Grasa/efectos adversos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Obesidad/complicaciones , Proteínas de Fusión Oncogénica/genética , PPAR delta/uso terapéutico
2.
Oncologist ; 29(2): 159-165, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37669224

RESUMEN

BACKGROUND: Molecular-driven oncology allows oncologists to identify treatments that match a cancer's genomic profile. Clinical trials are promoted as an effective modality to deliver a molecularly matched treatment. We explore the role of geographical accessibility in Italy, and its impact on patient access to clinical trials. MATERIAL AND METHODS: We retrospectively reviewed molecular data from a single-institutional case series of patients receiving next-generation sequencing testing between March 2019 and July 2020. Actionable alterations were defined as the ones with at least one matched treatment on Clinicaltrials.gov at the time of genomic report signature. We then calculated the hypothetical distance to travel to reach the nearest assigned clinical trial. RESULTS: We identified 159 patients eligible for analysis. One hundred and one could be potentially assigned to a clinical trial in Italy, and the median distance that patients needed to travel to reach the closest location with a suitable clinical trial was 76 km (interquartile range = 127.46 km). Geographical distribution of clinical trials in Italy found to be heterogeneous, with Milan and Naples being the areas with a higher concentration. We then found that the probability of having a clinical trial close to a patient's hometown increased over time, according to registered studies between 2015 and 2020. CONCLUSIONS: The median distance to be travelled to the nearest trial was generally acceptable for patients, and trials availability is increasing. Nevertheless, many areas are still lacking trials, so efforts are required to increase and homogenize the possibilities to be enrolled in clinical trials for Italian patients with cancer.


Asunto(s)
Neoplasias , Humanos , Estudios Retrospectivos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Oncología Médica , Italia , Genómica
3.
Oncologist ; 29(2): e266-e274, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37715957

RESUMEN

BACKGROUND: Immune-related adverse events (IRAE) pose a significant diagnostic and therapeutic challenge in patients treated with immune-oncology (IO) drugs. IRAEs have been suggested to correlate with better outcome, but studies are conflicting. Estimating the true incidence of IRAEs is particularly difficult in the early phase I/II trial setting. A key issue is the lack of IRAE diagnostic criteria, necessary to discriminate "pure" IRAEs from other treatment-related adverse events not sustained by an autoimmune process. METHODS: In patients treated with immune-oncology (IO) drugs in phases I-II trials at our institute, we identified high confidence (HC) or low confidence (LC) IRAEs by clinical consensus. We empirically developed an IRAE likelihood score (ILS) based on commonly available clinical data. Correlation with outcome was explored by multivariate Cox analysis. To mitigate immortal time-bias, analyses were conducted (1) at 2-month landmark and (2) modeling IRAEs as time-dependent covariate. RESULTS: Among 202 IO-treated patients, 29.2% developed >1 treatment-related adverse events (TRAE). Based on ILS >5, we classified patients in no IRAE (n = 143), HC IRAE (n = 24), or LC IRAE (n = 35). hazard ratios (HR) for HC were significantly lower than LC patients (HR for PFS ranging 0.24-0.44, for OS 0.18-0.23, all P < .01). CONCLUSION: ILS provides a simple system to identify bona fide IRAEs, pruning for other treatment-related events likely due to different pathophysiology. Applying stringent criteria leads to lower and more reliable estimates of IRAE incidence and identifies events with significant impact on survival.

4.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092052

RESUMEN

MOTIVATION: The steady increment of Whole Genome/Exome sequencing and the development of novel Next Generation Sequencing-based gene panels requires continuous testing and validation of variant calling (VC) pipelines and the detection of sequencing-related issues to be maintained up-to-date and feasible for the clinical settings. State of the art tools are reliable when used to compute standard performance metrics. However, the need for an automated software to discriminate between bioinformatic and sequencing issues and to optimize VC parameters remains unmet. RESULTS: The aim of the current work is to present RecallME, a bioinformatic suite that tracks down difficult-to-detect variants as insertions and deletions in highly repetitive regions, thus providing the maximum reachable recall for both single nucleotide variants and small insertion and deletions and to precisely guide the user in the pipeline optimization process. AVAILABILITY AND IMPLEMENTATION: Source code is freely available under MIT license at https://github.com/mazzalab-ieo/recallme. RecallME web application is available at https://translational-oncology-lab.shinyapps.io/recallme/. To use RecallME, users must obtain a license for ANNOVAR by themselves.


Asunto(s)
Benchmarking , Programas Informáticos , Biología Computacional , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento
5.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205631

RESUMEN

Radiomics uses high-dimensional sets of imaging features to predict biological characteristics of tumors and clinical outcomes. The choice of the algorithm used to analyze radiomic features and perform predictions has a high impact on the results, thus the identification of adequate machine learning methods for radiomic applications is crucial. In this study we aim to identify suitable approaches of analysis for radiomic-based binary predictions, according to sample size, outcome balancing and the features-outcome association strength. Simulated data were obtained reproducing the correlation structure among 168 radiomic features extracted from Computed Tomography images of 270 Non-Small-Cell Lung Cancer (NSCLC) patients and the associated to lymph node status. Performances of six classifiers combined with six feature selection (FS) methods were assessed on the simulated data using AUC (Area Under the Receiver Operating Characteristics Curves), sensitivity, and specificity. For all the FS methods and regardless of the association strength, the tree-based classifiers Random Forest and Extreme Gradient Boosting obtained good performances (AUC ≥ 0.73), showing the best trade-off between sensitivity and specificity. On small samples, performances were generally lower than in large-medium samples and with larger variations. FS methods generally did not improve performances. Thus, in radiomic studies, we suggest evaluating the choice of FS and classifiers, considering specific sample size, balancing, and association strength.

6.
Am J Hum Genet ; 108(4): 682-695, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761318

RESUMEN

The increasing scope of genetic testing allowed by next-generation sequencing (NGS) dramatically increased the number of genetic variants to be interpreted as pathogenic or benign for adequate patient management. Still, the interpretation process often fails to deliver a clear classification, resulting in either variants of unknown significance (VUSs) or variants with conflicting interpretation of pathogenicity (CIP); these represent a major clinical problem because they do not provide useful information for decision-making, causing a large fraction of genetically determined disease to remain undertreated. We developed a machine learning (random forest)-based tool, RENOVO, that classifies variants as pathogenic or benign on the basis of publicly available information and provides a pathogenicity likelihood score (PLS). Using the same feature classes recommended by guidelines, we trained RENOVO on established pathogenic/benign variants in ClinVar (training set accuracy = 99%) and tested its performance on variants whose interpretation has changed over time (test set accuracy = 95%). We further validated the algorithm on additional datasets including unreported variants validated either through expert consensus (ENIGMA) or laboratory-based functional techniques (on BRCA1/2 and SCN5A). On all datasets, RENOVO outperformed existing automated interpretation tools. On the basis of the above validation metrics, we assigned a defined PLS to all existing ClinVar VUSs, proposing a reclassification for 67% with >90% estimated precision. RENOVO provides a validated tool to reduce the fraction of uninterpreted or misinterpreted variants, tackling an area of unmet need in modern clinical genetics.


Asunto(s)
Mutación de Línea Germinal/genética , Aprendizaje Automático , Capacitación de Usuario de Computador , Conjuntos de Datos como Asunto , Genes BRCA1 , Humanos , Reproducibilidad de los Resultados
7.
Genes Nutr ; 15(1): 21, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243154

RESUMEN

BACKGROUND: Increased adipogenesis and altered adipocyte function contribute to the development of obesity and associated comorbidities. Fructose modified adipocyte metabolism compared to glucose, but the regulatory mechanisms and consequences for obesity are unknown. Genome-wide methylation and global transcriptomics in SGBS pre-adipocytes exposed to 0, 2.5, 5, and 10 mM fructose, added to a 5-mM glucose-containing medium, were analyzed at 0, 24, 48, 96, 192, and 384 h following the induction of adipogenesis. RESULTS: Time-dependent changes in DNA methylation compared to baseline (0 h) occurred during the final maturation of adipocytes, between 192 and 384 h. Larger percentages (0.1% at 192 h, 3.2% at 384 h) of differentially methylated regions (DMRs) were found in adipocytes differentiated in the glucose-containing control media compared to adipocytes differentiated in fructose-supplemented media (0.0006% for 10 mM, 0.001% for 5 mM, and 0.005% for 2.5 mM at 384 h). A total of 1437 DMRs were identified in 5237 differentially expressed genes at 384 h post-induction in glucose-containing (5 mM) control media. The majority of them inversely correlated with the gene expression, but 666 regions were positively correlated to the gene expression. CONCLUSIONS: Our studies demonstrate that DNA methylation regulates or marks the transformation of morphologically differentiating adipocytes (seen at 192 h), to the more mature and metabolically robust adipocytes (as seen at 384 h) in a genome-wide manner. Lower (2.5 mM) concentrations of fructose have the most robust effects on methylation compared to higher concentrations (5 and 10 mM), suggesting that fructose may be playing a signaling/regulatory role at lower concentrations of fructose and as a substrate at higher concentrations.

8.
Front Med (Lausanne) ; 7: 367, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695791

RESUMEN

Background: The unprecedented impact of the COVID-19 pandemic on modern society has ignited a "gold rush" for effective treatment and diagnostic strategies, with a significant diversion of economic, scientific, and human resources toward dedicated clinical research. We aimed to describe trends in this rapidly changing landscape to inform adequate resource allocation. Methods: We developed an online repository (COVID Trial Monitor) to analyze in real time the growth rate, geographical distribution, and characteristics of COVID-19 related trials. We defined structured semantic ontologies with controlled vocabularies to categorize trial interventions, study endpoints, and study designs. Analyses are publicly available at https://bioinfo.ieo.it/shiny/app/CovidCT. Results: We observe a clear prevalence of monocentric trials with highly heterogeneous endpoints and a significant disconnect between geographic distribution and disease prevalence, implying that most countries would need to recruit unrealistic percentages of their total prevalent cases to fulfill enrolment. Conclusions: This geographically and methodologically incoherent growth casts doubts on the actual feasibility of locally reaching target sample sizes and the probability of most of these trials providing reliable and transferable results. We call for the harmonization of clinical trial design criteria for COVID-19 and the increased use of larger master protocols incorporating elements of adaptive designs. COVID Trial Monitor identifies critical issues in current COVID-19-related clinical research and represents a useful resource with which researchers and policymakers can improve the quality and efficiency of related trials.

9.
J Immunother Cancer ; 8(1)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32238471

RESUMEN

The rapid rise to fame of immuno-oncology (IO) drugs has generated unprecedented interest in the industry, patients and doctors, and has had a major impact in the treatment of most cancers. An interesting aspect in the clinical development of many IO agents is the increasing reliance on nonconventional trial design, including the so-called 'master protocols' that incorporate various adaptive features and often heavily rely on biomarkers to select patient populations most likely to benefit. These novel designs promise to maximize the clinical benefit that can be reaped from clinical research, but are not without costs. Their acceptance as solid evidence basis for use outside of the research context requires profound cultural changes by multiple stakeholders, including regulatory bodies, decision-makers, statisticians, researchers, doctors and, most importantly, patients. Here we review characteristics of recent and ongoing trials testing IO drugs with unconventional design, and we highlight trends and critical aspects.


Asunto(s)
Inmunoterapia/métodos , Oncología Médica/métodos , Neoplasias/terapia , Humanos
10.
Mol Nutr Food Res ; 63(5): e1800568, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30724465

RESUMEN

SCOPE: Flexitarian dieting is increasingly associated with health benefits. The study of postprandial metabolic response to vegan and animal diets is essential to decipher how specific diet components may mediate metabolic changes. METHODS AND RESULTS: A randomized, crossover, controlled vegan versus animal diet challenge is conducted on 21 healthy participants. Postprandial metabolic measurements are conducted at seven timepoints. Area under the curve analysis of the vegan diet response demonstrates higher glucose (EE 0.35), insulin (EE 0.38), triglycerides (EE 0.72), and nine amino acids at breakfast (EE 4.72-209.32); and six lower health-promoting fatty acids at lunch (EE -0.1035 to -0.13) (p < 0.05). CONCLUSIONS: Glycemic and lipid parameters vary irrespective of diet type, demonstrating that vegan and animal meals contain health-promoting and suboptimal nutrient combinations. The vegan breakfast produces the same pattern of elevated branched chain amino acids, insulin, and glucose as the animal diet from the fasting results, reflecting the low protein load in the animal and the higher branched-chain amino acid load of the vegan breakfast. Liberalization of the vegan menu to vegetarian and the animal menu to a Nordic-based diet can result in optimal metabolic signatures for both flexitarian diet strategies in future research.


Asunto(s)
Glucemia/metabolismo , Dieta , Lípidos/sangre , Veganos , Adulto , Aminoácidos/sangre , Aminoácidos de Cadena Ramificada/sangre , Animales , Ácidos y Sales Biliares/sangre , Estudios Cruzados , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos/sangre , Femenino , Voluntarios Sanos , Humanos , Masculino , Metaboloma , Periodo Posprandial , Factores de Tiempo , Vegetarianos
11.
Brief Bioinform ; 20(4): 1269-1279, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-29272335

RESUMEN

With the recent developments in the field of multi-omics integration, the interest in factors such as data preprocessing, choice of the integration method and the number of different omics considered had increased. In this work, the impact of these factors is explored when solving the problem of sample classification, by comparing the performances of five unsupervised algorithms: Multiple Canonical Correlation Analysis, Multiple Co-Inertia Analysis, Multiple Factor Analysis, Joint and Individual Variation Explained and Similarity Network Fusion. These methods were applied to three real data sets taken from literature and several ad hoc simulated scenarios to discuss classification performance in different conditions of noise and signal strength across the data types. The impact of experimental design, feature selection and parameter training has been also evaluated to unravel important conditions that can affect the accuracy of the result.


Asunto(s)
Biología Computacional/métodos , Integración de Sistemas , Aprendizaje Automático no Supervisado , Algoritmos , Animales , Análisis por Conglomerados , Simulación por Computador , Bases de Datos Factuales , Análisis Factorial , Genómica/estadística & datos numéricos , Humanos , Metabolómica/estadística & datos numéricos , Ratones , Modelos Biológicos , Análisis Multivariante , Proteómica/estadística & datos numéricos , Biología de Sistemas , Aprendizaje Automático no Supervisado/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...